

SPECIAL MOBILITY STRAND

SYSTEM IDENTIFICATION OF BRIDGES USING AMBIENT VIBRATION MEASUREMENTS AND NUMERICAL SIMULATIONS (CASE STUDIES) Damir Zenunovic Tirana, April 2019

Damir Zenunovic Full Profesor, University of Tuzla, Faculty of Mining, Geology and Civil Engineering, Department of Civil Engineering

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

CASE STUDY 1 – THE BRIDGE OVER RIVER BOSNIA IN SARAJEVO

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Elevation and cross-sections of the bridge

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Test equipment

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Test equipment

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

Measurement on base station 6R (middle of the span)

Blastware -	- # MP1	2771, J	ul 17 /1	1 11:25:2	2 - [Ever	nt Repo	rt]		1	1					
🖸 File Uni	it Too	ls Wi	ndow	Help				_	_	-		_			
13			-		ф-	R	1		9	i.	5	187			
			1000		n.	~	-		20.0			500			
Event	Even	t	FFT	An	alysis	Prin	nt	Report	Advan	iced	Compliance	Flex			
Manager	Repo	rt	Report					Options	Setu	ıp	Setup	Setup	<u>k</u>		
ate/Time	Aux.	at 11:25	i:22 July	17, 2011			Serial I	umber	MP12771	V 10-2	20 Minimate Pro	4			
Range Geo: 254 mm/s						Battery Level			4.1 Volts						
Record Time	120.0) sec at	512 sps			Unit Calibration Geo1 Calibration			February 4, 2011 by Instantel inc.						
lob Number:	1								SD12630, February 4, 2011 by Instantel inc.						
Operator/Setup	p: Oper	ator 1/M	OST.nsb				File Na	me	MP12771_	2011	0717112522.ID	FW			
Votes															
Location: M	IOST								USBM RI8	507 A	Ind OSMRE				
Client: Pr	rojekt : N/	ATO SfP	983828					-			1 2 2	1			
User Name: D	r.sc.Eldar	Husejna	gic, docent	1			254			+++		++++++			
<mark>Bene</mark> ral: R	GGF u Tu	uzli					200 -	1				800			
Extended Nate	-						100	_							
REFERENTIA T	TACKA						100 1					Ŧ			
Mieros mieste M	MAGNA						Ŧ					Ŧ			
wjerno mjesto Mi	-0-M						50 -	20 20							
						-	+	2			11	+			
		Tran	Vert	Long		Se .		8			//	+			
PPV		0.485	6.82	1.58	mm/s	E					//				
ZC Freq		18	11	18	Hz	-	20 -	C)			-	12.9 22			
Time (Rel. to Tr	rig)	57.963	61.207	61.211	sec	£		8	<i>[</i>	/					
Peak Accelera	ation 0	.00946	0.0531	0.0218	a	8	10 -	- /							
Peak Displace	ement	0.284	0.0959	0.0166	mm	e	ŧ					+			
Sensor Check		Passed	Passed	Passed		>		/		X		1			
Frequency		7.6	74	7.5	H7		5-	2		v X		200			
Overswing	Ratio	3.4	3.8	3.7			1	•		x		t			
Less en en en en en el			0.000000000	0.0000			1	0	XX	xX a	J.	t –			
Peak Vector S	ium 6.9	7 mm/s :	at 61.207	sec			2	<u>e</u> ,	1	0.5	× ×	1000			
							632		1.2	~	× an				
							-			x xX	o x o				
							1-	-			· · · ·	+++++++			
							< 1	2	5	10	20	50 100	>		
									Free	quenc	y (Hz)				
									Tran: + \	Vert: x	Long: e				
Ţ		2			E				E E	100 M	11. 11. 11.				
ł	<u>80</u>	100	12	12	15	20	20	10	16 E)		23 23 <u>-</u>				
f											1				
Ŧ											-11				
ŧ						1					-	\wedge			
ong								-2-				10	0.0		
+											-	1			
t t												1			
1											11	1 1			
l i															
I											1				
Ť											1				
t						11					h				
I						LAL					1	~			
Vert			- Arrist		- Andrews	AL LA	an and a lit			1.1	1	A	0.0		
					San Araba	11.1			STATISTICS.			10	0.0		
+												1			

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Ambient vibration testing procedure consists of real time recording of the vibrations and processing of the records by means of the Fast Fourier Transform , i. e. obtaining of Fourier Amplitude Spectra.

 $X(f) = \int^{+\infty} x(t) e^{-2\pi i f} dt$

frequencies (Hz)

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

The peaks of the amplitude spectrum occur at the predominant frequencies of the time function x(t), which due to the flat spectrum of the excitation represent the natural frequencies of the structure.

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

SUDDOROR STATE

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Measurement on base station 6R (middle of the span)

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Comparison of vertical channels

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Measured dominant frequency

Measuring points	Trans. Freq. (Hz)	Vert. Freq. (Hz)	Long. Freq. (Hz)
M1	5.62, 5.63, 5.47,	5.45, 5.60, 4.98,	5.61, 5.60, 3.81,
4R, 5R, 6R, 7R, 8R	5.62, 5.63	3.81, 5.61	3.81, 3.81
M2	5.77, 5.97, 16.4,	7.69, 5.50, 4.97,	19.6, 5.43, 3.73,
2R, 3R, 6R, 9R, 10R	5.97, 6.00	5.43, 7.58	5.43, 6.16
M3	5.76, 5.75, 5.57,	7.85, 7.86, 4.95,	21.7, 5.56, 3.85,
1R, 2R, 6R, 10R, 11R	5.75, 5.75	5.73, 5.73	5.56, 5.56
M4	5.76, 5.76, 5.76,	5.38, 5.74, 5.76,	5.48, 5.48, 5.48,
6R, 4L, 5L, 6L, 7L	5.49, 5.76	5.36, 17.2	5.48, 3.88
M5	5.54, 6.48, 5.75,	5.02, 5.54, 5.78,	3.86, 5.54, 5.54,
6R, 3L, 4L, 8L, 9L	7.74, 5.02	5.02, 5.54	17.2, 5.54
M6	16.3, 6.70, 19.3,	6.85, 20.3, 6.70,	3.92, 7.95, 19.50,
6R, 1L, 2L, 10L, 11L	5.67, 8.24	8.17, 20.9	6.29, 6.29
M7	4.95, 14.1, 4.99,	4.99, 2.27, 4.99,	16.1, 5.50, 5.50,
6R, 12, 13, 16, 17	2.01, 2.00	2.00, 2.01	2.01, 2.02
M8	6.84, 16.6, 5.84,	6.84, 2.39, 17.1,	3.91, 6.28, 6.37,
6R, 12, 13, 16, 17	2.00, 2.00	2.00, 2.00	2.00, 2.00

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

[dB | (1 mm/s)² / Hz]

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

Average of All Spectral Densities for all Test Setups

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

STUDIOR DA

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Modal Values

Frequency = 3.855 Hz Damping = 2.258 %

Display Settings

Rotation Horz. = 30" Rotation Vert. = 30" Translation Horz. = 0 Translation Vert. = 0 Zoom Level = 138% Amplitude = 16% Phase Angle = 270" Frames per Sec.= 0

Modal Values

Frequency = 5.342 Hz Damping = 1.656 %

Display Settings

Rotation Horz. = 30* Rotation Vert. = 30* Translation Horz. = 0 Translation Vert. = 0 Zoom Level = 138% Amplitude = 16% Phase Angle = 306* Frames per Sec.= 0

Modal Values

Frequency = 4.971 Hz Damping = 1.364 %

Display Settings

Rotation Horz. = 30* Rotation Vert. = 30* Translation Horz. = 0 Translation Vert. = 0 Zoom Level = 138% Amplitude = 16% Phase Angle = 306* Frames per Sec.= 0

Modal Values

Frequency = 6.698 Hz Damping = 2.101 %

Display Settings

Rotation Horz. = 30* Rotation Vert. = 30* Translation Horz. = 0 Translation Vert. = 0 Zoom Level = 138% Amplitude = 16% Phase Angle = 270* Frames per Sec.= 0

STUDIORUM INALA

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Transfer data to another program

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Transfer data to another program

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

Finite Element Models (FEMs)

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Review of the FEMs

S1-NB1-M1	S1-NB1-M1 S		S1-NB2-M	[2	S1-NB3-M2		
S2-NB1-M1	S	2-NB1-M2	S2-NB2-M	[2	S2-NB3-M2		
S3-NB1-M1	S	3-NB1-M2	S3-NB2-M	[2	S3-NB3-M2		
S4-NB1-M1	S	4-NB1-M2	S4-NB2-M	2	S4-NB3-M2		
S5-NB1-M1	S	5-NB1-M2	S5-NB2-M	2	S5-NB3-M2		
S6-NB1-M1	S	6-NB1-M2	S6-NB2-M	2	S6-NB3-M2		
SOIL		NEOPREN EI BEAI	LASTOMERIC RING	CO	NCRETE STRENGTH		
S1- absolute stiff		NB1 – designe	d stiffness (DS)	M1 – designed strength			
S2 – 10 x k (S4)		NB2 – 1	1.5 x DS	$(\underline{\text{fck}} = 30 \text{MPa}, \underline{\text{Ecm}} = 31 \text{GPa})$			
S3 – 5 x k (S4)		NB3	- stiff	M2 – theoretical strength after 45			
S4 – empirical stiffness	of soil			years'	service (Ec0 = $38,5$ GPa)		
(k = 15000kN/m ²) has selected based on the exp with similar soils	been erience						
S5 – layered soil (LS) modulus E determined (PGSM)	with 1 by						
S6 – LS with 10% of mo	dulus E						

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

Modal frequencies

	LONGITUDINAL MODE	TRANSVERSE MODE	BENDING MODE	TORSIONAL MODE
Ambient Vibration Measurements	-	3.855	4.971	5.342
FEMs				
S1-NB1-M1	2.654 (2)	2.803 (3)	3.673 (4)	3.896 (6)
S2-NB1-M1	2.442 (1)	2.454 (2)	3.654 (3)	3.810 (6)
S3-NB1-M1	2.267 (2)	2.148 (1)	3.651 (4)	3.616 (3)
S4-NB1-M1	1.567 (2)	1.444 (1)	3.630 (4)	2.967 (3)
S5-NB1-M1	2.523 (2)	2.312 (1)	3.907 (6)	3.711 (5)
S6-NB1-M1	2.459 (2)	1.969 (1)	3.884 (6)	3.405 (4)
S1-NB1-M2	2.751 (1)	<mark>3.641 (2)</mark>	3.798 (5)	4.377 (6)
S2-NB1-M2	2.512 (1)	2.522 (2)	3.828 (3)	3.949 (6)
S3-NB1-M2	2.323 (2)	2.198 (1)	3.824 (4)	3.737 (3)
S4-NB1-M2	1.586 (2)	1.448 (1)	3.794 (6)	3.030 (3)
S5-NB1-M2	2.614 (2)	2.369 (1)	4.081 (6)	3.806 (5)
S6-NB1-M2	2.542 (2)	2.011 (1)	4.054 (6)	3.483 (3)
S1-NB2-M2	2.971 (1)	<mark>3.731 (2)</mark>	3.825 (3)	4.443 (6)
S2-NB2-M2	2.666 (2)	2.556 (1)	3.860 (3)	4.065 (6)

Modal frequencies

· · · · · · · · · · · · · · · · · · ·	•			
	LONGITUDINAL	TRANSVERSE	BENDING	TORSIONAL
	MODE	MODE	MODE	MODE
Ambient Vibration Measurements	-	3.855	4.971	5.342
FEMs				
S3-NB2-M2	2.442 (2)	2.224 (1)	3.857 (3)	3.857 (4)
S4-NB2-M2	1.627 (2)	1.467 (1)	3.827 (6)	3.124 (3)
S5-NB2-M2	2.804 (2)	2.411 (1)	4.184 (6)	4.126 (5)
S6-NB2-M2	2.715 (2)	2.046 (1)	4.156 (6)	3.755 (4)
S1-NB3-M2	3.574 (1)	<mark>4.246 (3) (fig.14a)</mark>	4.136 (2)	<mark>5.026 (5) (fig.14b)</mark>
S2-NB3-M2	3.207 (2)	2.689 (1)	4.261 (3)	4.383 (4)
S3-NB3-M2	2.915 (2)	2.317 (1)	4.253 (4)	4.143 (3)
S4-NB3-M2	1.965 (2)	1.528 (1)	4.198 (4)	3.320 (3)
S5-NB3-M2	3.407 (2)	2.513 (1)	<mark>4.639 (3)(fig.14c)</mark>	4.847 (3)
S6-NB3-M2	3.239 (2)	2.146 (1)	4.609 (4)	4.318 (3)

(n) marks in parenthesis denote modes of certain models

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

Comparison of the modes parameters (mode shapes) identified by AVM and FEMs

Normalized amplitudes at selected points (levels) for each particular mode shape

 $\frac{\left|X_{i}(f_{j})\right|}{\left|X_{r}(f_{i})\right|}$ $a_{i,j} = -$

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Experimentally and mathematically identified first vertical mode shapes

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

- AVM

Experimentally and mathematically identified first transverse mode shapes

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

CASE STUDY 2 – THE TWIN BRIDGE "GOCE DELCEV" IN SKOPJE

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

Elevation and cross-sections of the bridge

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

Measurements setup

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

	1 03	°5	Φ7	09	°11	0 ₁₃	°15	0 ₁₇ 1. Upstr	0 ₁₉ eam brid	0 ₂₁ ge	°23	0 ₂₅	0 ₂₇	Ф ₂₉	°31	0 ₃₃	•35	
	² o ⁴	o ⁶	φ ⁸	o ¹⁰	o ¹²	o ¹⁴	o 16	018	o ²⁰	o ²²	o ²⁴	o ²⁶	o ²⁸	ه ³⁰	o ³²	o ³⁴	o ³⁶	
_	_		\	/									/					
	° 1	°3	°5	• 7	° 9	°11	°13	°15	° ₁₇	0 ₁₉	°21	°23	°25	°27	^Φ 29	°31	°33	9 ₃₅
	i i			1					2. Downt	ream bri	dge				1			i.
	o ²	o ⁴	06	08	o ¹⁰	o12	0 ¹⁴	o 16	o ¹⁸	o ²⁰	o ²²	o ²⁴	0 ²⁶	o ²⁸	• ³⁰	o ³²	o ³⁴	³⁶
					\									1	\ \			
									Z	Varda 7	r river							

Setup	Moveable stations	Base stations
M1	37,38	16R
M2	1,2,3,4	16R
M3	1,2,3,4	16R
M4	5,6,7,8	16R
M5	9,10,11,12	16R
M6	13,14,15	16R
M7	17,18,19,20	16R
M8	21,22,23,24	16R
M9	25,26,27,28	16R
M10	29,30,31,32	16R
M11	33,34,35,36	16R
M12	33,34,35,36	16R
M13	39,40	16R
M14	41,42	16R

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Measurement on base station 16R

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Measurement on moveable station

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Measured dominant frequency

Measuring points	1st freq. (Hz)	2 nd freq. (Hz)	3 rd freq. (Hz)
16R, 1, 2, 3, 4	1.30V, 2.00VTL, 1.98L, 1.30V, 1.98	1.98VT, 2.88L, -, 1.99VTL, -	-, 3.31L, -, 2.86L, -
16R, 5, 6, 7, 8	1.28V, 2.03VT, 2.03VT, 2.03VT,	2.03VT, 2.92V, 2.92L, 2.92L, 2.92L	4,27V, -, -, -, -
16R, 9, 10, 11, 12	1.29V, 1.29V, 1.29V, 1.30V, 1.30V	2.05VT, 2.06VT, 2.06VT, 2.05VT,	-,-, -, 2.95L, -
16R, 13, 14, 15	1.28V, 1.28V, 1.28V, 1.28V	2.02VT, 2.02VT, 2.02VT, 2.02VT	-,2.91L, -, 2.91L
16R, 17, 18, 19, 20	1.29V, 1.29V, 1.29V, 1.29V, 1.28V	2.03VT, 2.03T, 2.03VT, 2.03T, 2.03T	4,23V, 3.34L, -, 3.35L, 3.35L
16R, 21, 22, 23, 24	1.28V, 1.28V, 1.28V, 1.28V, 1.28V	2.02VT, 2.02VT, 2.02VT, 2.02VT,	-,2.90L, -, 2.91L, 2.91L
16R, 25, 26, 27, 28	1.28V, 1.28V, 1.28V, 1.28V, 1.28V	2.00VT, 2.00VTL, 2.00VT, 2.00VT,	-,2.88L,2.88L, 2.88L,2.88L
16R, 29, 30, 31, 32	1.27V, 1.80VTL, 1.80VT, 1.80V, -	2.10VT, 2.10VTL, 2.10VT, 2.10VT,	-,2.88L,2.88L, 2.91L,2.91L
16R, 33, 34, 35, 36	1.28V, 1.28V, 1.28V, 1.28L, 2.00L	2.02VT, 2.02VTL, 2.02VTL, 2.02TL,	-,2.84L, -, 2.84L, -
16R, 37, 38	1.27V, 4.20VTL, 2.00T	2.01VT, -, 2.14V	4.23V, -, 8.88L
16R, 39, 40	1.29V, 2.90L, 2.07V	1.97VT, 7.83T, 4.63T	-,13.7V,11.8L

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

1st vertical mode

Modal Values

Frequency = 1.273 Hz Damping = 0.9538 %

Display Settings

Rotation Horz. = 30° Rotation Vert. = 29° Translation Horz. = 0 Translation Vert. = 0 Zoom Level = 140% Amplitude = 100% Phase Angle = 125° Frames per Sec.= 0

Undeformed Geometry

Deformed Geometry

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

1st transverse mode

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

2nd vertical mode

Damping = 1.094 %

Modal Values

Rotation Horz. = 30° Rotation Vert. = 29° Translation Horz. = 0 Translation Vert. = 0 Zoom Level = 140% Amplitude = 100% Phase Angle = 306° Frames per Sec.= 0

Undeformed Geometry

Deformed Geometry

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

2nd transverse mode

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Finite Element Models (FEMs)

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

Mathematically identified 1st vertical mode

Modes	AVM	AM3
First vertical	1.273	1.273
First transverse	2.000	1.921
Second vertical	3.235	3.542
Second transverse	4.65	5.852

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

Mathematically identified 2nd transverse mode

Modes	AVM	AM3
First vertical	1.273	1.273
First transverse	2.000	1.921
Second vertical	3.235	3.542
Second transverse	4.65	5.852

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

Experimentally and mathematically identified first vertical mode shapes

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Experimentally and mathematically identified first transverse mode shapes

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Experimentally and mathematically identified second vertical mode shapes

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Experimentally and mathematically identified second transverse mode shapes

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

CASE STUDY 3 – THE CABLE - STAYED BRIDGE IN TUZLA

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

Elevation and cross-sections of the bridge

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Measurements setup 8 20 Т 21 19 15 er det as warde 005.01 10.00 Ins knopp R

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

[dB|(1 m/s²)²/Hz]

Frequency Domain Decomposition - Peak Picking Average of the Normalized Singular Values of Spectral Density Matrices of all Test Setups

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

1st mode

STODUCK OK

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

2nd mode

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

Mathematically identified 1st mode

Experimentally and mathematically identified modal frequencies (Hz)

MODES	AVM	AM4
FIRST MODE	2.719	2.727
SECOND MODE	6.790	6.512

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Mathematically identified 2nd mode

Experimentally and mathematically identified modal frequencies (Hz)

MODES	AVM	AM4
FIRST MODE	2.719	2.727
SECOND MODE	6.790	6.512

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Co-funded by the Erasmus+ Programme of the European Union

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commision cannot be held responsible for any use which may be made of the information contained therein.

Co-funded by the | Erasmus+ Programme of the European Union

The presented studies show that the signal analysis of ambient vibration records allows the determination of the dynamic characteristics of the bridge. In addition, the frequency and associated modes of vibration can be assessed with adequate mathematical model. The presented results clearly indicate the great potential that ambient vibration measurements hold for monitoring bridge structures. The data collected during the ambient vibration test, which only took some hours and very few resources, processed with adequate algorithms provided very useful information. The comparisons presented in case studies constitute a validation of the developed mathematical models and at the same time permit some fine tuning, especially concerning the boundary conditions and unexpected channel errors. In particular, this slides clearly shows that it was possible to extract a lot of useful information from data collected during the ambient vibration test.

The European Commission support for the production of this publication does not constitute an endorsement of the contects which refrects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Thank you for your attention e-mail: damir.zenunovic@untz.ba

Knowledge FOr Resilient soCiEty