

Co-funded by the Erasmus+ Programme of the European Union

RISK ASSESSMENT IN PUBLIC SPACES: ROAD TUNNEL

JOSE RANGEL, R²+SBE Group- Civil Engineering

Epoka University, 07.05.2019.

The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

CONTENT

- SHORT PRESENTATION
- PUBLIC SPACES
- RISK ASSESSMENT OF ROAD TUNNELS

FIRE AND EGRESS PROBABILISTIC SIMULATION IN ROAD TUNNELS

RISK, RESILIENCE AND SUSTAINABILITY IN THE BUILT ENVIRONMENT

AALBORG UNIVERSITET

- Civil Engineer, UAT, MX
- M. Eng. Structural engineering, UNAM, MX
- Ph.D. in Civil Engineering, AAU, DK

- **Topics within Risk and Reliability:** Earthquake engineering, risk-based inspection and maintenance planning of offshore wind turbines and jacket structures, fire and egress probabilistic modelling, software and apps for engineering.
- Postdoctoral Researcher at Aalborg University, Civil Engineering.

AALBORG UNIVERSITY DENMARK

ABOUT PUBLIC SPACES

United Nations's definition UNESCO – Educational, Scientific and Cultural Organization

A public space refers to an area or place that is open and accessible to all peoples, regardless of :

- gender,
- race,
- ethnicity,
- age or
- socio-economic level.

These are **public gathering spaces** such as plazas, squares and parks. **Connecting spaces**, such as sidewalks and streets, are also **public spaces**. In the 21st century, some even consider the **virtual spaces** available through the internet as a new type of public space that develops interaction and social mixing.

Maintained by a public institution Own by public sector Serve to the public sector Promote social cohesion

ABOUT PUBLIC SPACES

United Nations's definition UNESCO – Educational, Scientific and Cultural Organization

- Public space (communities and urban areas)
- Public gathering spaces (parks, museum, halls, churches)
- Virtual spaces (virtual communities, virtual gathering environment, virtual interactive spaces, etc).
- Connecting spaces (train stations, tunnels, subway, roads)

ABOUT PUBLIC SPACES

Wildfire

Earthquake event (public gathering space)

Unlawful-provoked harmful conditions

Sri-Lanka terrorist attact (at different public spaces)

Flooding (public gathering space)

- Operational conditions
- Physical and spatial characteristics (road and tunnel).
- **Prospective hazardous incidents**
- Emergency and evacuation systems
- User's characteristics

From "Development of a best practice methodology for risk assessment in road tunnels"

11

Matrisk GmbH; Høj, Peter N.; Köhler, Jochen and Faber, Michael H.

ROAD TUNNELS

٠

٠

ANNUAL AVERAGE DAILY TRAFFIC CURVE

Traffic volumen Annual Average Daily Traffic Tunnel zone Daytime Vehicles per hour Level of service Vehicles per kilometer Heavy-goods vehicles Passenger vehicles Lane shift Speed limits

From "*Development of a best practice methodology for risk assessment in road tunnels*" Matrisk GmbH; Høj, Peter N. ; Köhler, Jochen and Faber, Michael H.

ROAD TUNNELS

ANNUAL AVERAGE DAILY TRAFFIC CURVE

Traffic volumen Annual Average Daily Traffic Tunnel zone Daytime Vehicles per hour Level of service Vehicles per kilometer Heavy-goods vehicles Passenger vehicles Lane shift Speed limits

12

EXIT AND ENTRANCE CONDITIONS

EXIT AND ENTRANCE CONDITIONS

Lane width Number of lanes Horizontal radius Road directionality Gradient

BAYESIAN PROBABILISTIC NETWORK as a probabilistic tool to assess and perform decision analysis under the contribution of each of the variables

BAYESIAN PROBABILISTIC NETWORK as a probabilistic tool to assess and perform decision analysis under the contribution of each of the variables

ACCIDENT MODIFICATION FACTOR

It is used to describe the **deviation of an accident rate** from the normal base rate. Accident modification factors (UMF) are often used to model the influence of changes to the road infra structure on accident frequency.

A change in the accident rate that can be expected if one or more indicators deviate from the normal case. The difficulty lies in defining what is normal. Since accident statistics usually do not differentiate between different risk indicators, it can be assumed that the accident rate in tunnels represents the mean across all tunnels in a country.

BAYESIAN PROBABILISTIC NETWORK as a

probabilistic tool to assess and perform decision analysis under the contribution of each of the variables

ACCIDENT RATE PER MILLION VEHICLE-KM

Accident rate Acceptable accident rate

Schweizerische Eidgenossenschaft Confederation suisse Confederazione Svizzera Confederaziun svizza	Eidgenössliches Departement für Umwelt. Verkehr, Energie und Kommunikation UVEK Departement Kelska die revindenment, des transporti, a freinergie die la communication DETEC Dipartimento federale dell'ambiente, del trasporti, dell'energia e delle comunicazioni DATEC Bundesamt für strassen Office federale des routes Ufficio federale delle Strade	•	Schweizerische Eidgenossenschaft Confederation suisse Confederatione Svizzera Confederatione Svizzera Eidgenössisches Departement für Umweit, Verkehr, Energie und Kommu Bundesamt für Strassen ASTRA	nikation UVEK	
tatens vegvesen Norwegian Public Roads Administration	Development of a best practice methodology for risk assessment in road tunnels		Dokumentation		Ausgabe 2014 V1.00
	Entwicklung einer besten Praxis Methode zur Risikomodellierung für Strassentunnelanlagen Développement d'une méthode de «meilleures pratiques» pour l'analyse des risques dans les tunnels routiers		Risikokonzep Nationalstras ^{Methodik} zur Ermitt	ot für Tunnel der sen Jung und Bewertung der R	tisiken in Tunneln
	Matrisk GmbH and HOJ Consulting GmbH Dr. Matthias Schubert Niels Peter Høj Dr. Jochen Köhler Prof. Dr. Michael H. Faber		Methodo asses	logy for identify sing risks in tu	ying and nnels
	Research project ASTRA 2009/001 at request of Federal Road Office (FEDRO) and Norwegian Public Roads Administration (NPRA) November 2011 1351		ASTRA 89005	ASTRA OFROU U	STRA UVIAS

	Table 5.1 Prior Knowledge of vehicle population							
	TYPE (\tilde{v}_{mnv})	European classification	Group	Description (\widetilde{v}_{pn} and \widetilde{v}_{hn})	\widetilde{v}_{ppv} , Prior knowledge of PAV [ref. XXX]**	$\widetilde{ u}_{phg},$ Prior knowdlege of HGV [ref. XXX]**		
	1	M1*	PAV	Mini cars	0.08			
	2	M1	PAV	Small vehicles	0.24			
	3	M1	PAV	Medium cars – small family vechiles	0.3			
EU-28 5 (in %)	4	M1	PAV	Large cars – Large family vehicles	0.07			
100	5	M1	PAV	Executive vehicles	0.03			
- 90	6	M1	PAV	Luxury vehicles	0.005			
- 20	7	M1	PAV	Sport vehicles	0.02			
80	8	M1	PAV	Multi-purpose vehicles	0.35			
- 70	9	M2	PAV	SUV and off-roads vehicles	0.2			
	10	M3 , N	PAV	Others (Bus/Coach)	0.02			
- 60	11	N1	HGV	Box Van		0.2305		
- 50	12	N2	HGV	Tipper Truck		0.1452		
50	13	N2	HGV	Curtain sided vehicle		0.1263		
- 40	14	N3	HGV	Drop side Lorry		0.0767		
	15	N3	HGV	Flat Lorry		0.0699		
- 30	16	N1, N2	HGV	Refuse disposal truck		0.0624		
- 20	17	N1	HGV	Insulated Van		0.0496		
20	18	N2	HGV	Skip loader vehicle		0.0481		
- 10	19	N3	HGV	Tanker		0.0299		
0	20	N1	HGV	Panel Van		0.0217		
0	21	N1	HGV	Street Cleasing vehicle		0.0189		
	22	N3	HGV	Car Transporter vehicle		0.0185		
	23	N3	HGV	Concrete Mixer		0.0167		
	24	N3	HGV	Live Stock Carrier		0.0160		
	25	N2, N3	HGV	Heavy-Goods transporter		0.0092		
	26	Т	HGV	Tractor		0.0082		
	27	N2, N3	HGV	Skeletal Vehicle		0.0067		
	28	N2, N3	HGV	Tower Wagon		0.0064		
	29	N1, N2	HGV	Motorhome		0.0064		
	30	N2	HGV	Luton Van	0.0039			
	31	N1, N2, N3	HGV	Others		0.0278		
			PAV-Passenger vehicles H	SV-Heavy-goods vehicles *Some mini-cars do not have four wheels **Prior kn	owledge is relative of the group of vehicles.			

22

Compare with other car classification [edit]

				Ve	hicle classification		view • talk • edit	
Not well-defined / vernacular			Defined by law or regulation					
Market segment (American English)	Market segment (British English)	Market segment (Australian English) ^[6]	US EPA Size Class ^[7]	Euro NCAP Structural Category ^[8]	Euro NCAP Class (1997–2009)	Euro Market Segment ^[9]	Examples	
Microcar	Microcar, Bubble car	N/A	N/A	-	Quadricycle	A compart mini care	Bond Bug, Isetta, Mega City, Renault Twizy	
Subcompact car	City car	Microcar	Minicompact	Supermini _®		A-segment mini cars	Citroën C1, Fiat 500, Hyundai Eon, Mitsubishi i-Mitev, Renault Twingo	
Economy car	Supermini	Light car	Subcompact			B-segment small cars	Ford Fiesta, Kia Rio, Opel Corsa, Peugeot 206, Volkswagen Polo	
Compact car	Small family car	Small car	Compact		Small family car	C-segment medium cars	Honda Civic, Mazda3, Suzuki Ciaz, Renault Mégane, Toyota Corolla	
Mid-size car	Large family car	Medium car	Mid-size		Larra family and C		Chevrolet Malibu, Ford Fusion, Prugeot 508, Subaru Legacy, Volkswagen Passat	
Entry-level luxury car	Compact executive car	Medium car above \$60,000	N/A		Alfa Romeo Giulia, Addi A4, Lexus ES, Mercedes-Benz C-Class			
Full-size car	E	Large car	Large			E	Chevrolet Impala, Ford Taurus, Mazda Xedos 9, Hyundai Grandeur, Holden Commodore, first and second generation	
Mid-size luxury car	- Executive car	Large car above \$70,000	N/A	Passenger car		E-segment executive cars	Audi A6, BMW 5 Series, Cadillac CTS, Mercedes-Benz E-Class, Tesla Model S	
Full-size luxury car	Luxury car	Upper large car above \$100,000	N/A		J/A	_	F-segment luxury cars	BMW 7 Series, Lincoln Town Car, Mercedes-Benz S-Class, Porsche Panamera, Maserati Quattroporte
Grand tourer	Grand tourer		N/A	-	_		Aston Martin DB9, Bentley Continental GT, Ferrari GTC4Lusso, Jaguar XK, Maserati GranTurismo	
Supercar	Supercar		N/A		-		Bugatti Veyron, LaFerrari, Lamborghini Aventador, Pagani Zonda, Porsche 918 Spyder	
Convertible	Convertible	- Sports car	N/A	-	_	- S-segment sports coupes	BMW 6 Series, Chevrolet Camaro, Mercedes CLK, Volvo C70, Volkswagen Eos	
Roadster	Roadster		Two-seater		Roadster sports	-	BMW Z4, Lotus Elise, Mazda MX-5, Porsche Boxster, Mercedes-Benz SLK	
_	Mini MPV	N/A					Citroen C3 Picasso, Ford B-Max, Opel Meriva, Fiat 500L	
MPV	Compact MPV	Decels moves	Minivan	Small MPV	Small MPV &		Chevrolet Orlando, Ford C-Max, Opel Zafira, Renault Scenic, Volkswagen Touran	
Minivan	Large MPV	People mover		MPV	Large MPV成	M-segment multi purpose cars	Chrysler Town and Country, Kia Carnival, Citroën C4 Grand Picasso, Renault Espace, Toyota Sienna	

AALBORG UNIVERSITY DENMARK

AALBORG UNIVERSITY

DENMARK

VEHICLES' GEOMETRY

24

VEHICLES' DYNAMICS

ANNUAL AVERAGE DAILY TRAFFIC CURVE

Time of arrival at fire scenario?

Vehicle cohort in the conflict point?

How many vehicles will be there in seconds?

VEHICLES' DYNAMICS

ANNUAL AVERAGE DAILY TRAFFIC CURVE

FIRE AND EGRESS PROBABILISTIC SIMULATION IN ROAD TUNNELS VEHICLES' GEOMETRY AND DYNAMIC

Tunnel spatial context

TUNNEL SPATIAL COMPONENTS

- Roadway characteristics (lane width and shoulders)
- Exit doors (distance between, size and arrangement)
- Ventilation system and components

AALBORG UNIVERSITY

DENMARK

- Fire source (intensity, HRR, ignition temperature,...)
- Spatial consideration of vehicle population

Wind profiles in the tunnel

AGENT-BASED MODELING

Agent-based modeling

Europe statistics of passengers

Agent-based modeling

Passengers location

Humanoid-agents's behaviour:

Active (A) Conservative (C) Follower (F) Herding (H)

Agent-based modeling

Humanoid-agents's behaviour:

Active (A) Conservative (C) Follower (F) Herding (H)

Agent-based modeling

Body type considerations

Table 6.1- Unimpeded walking velocities and body dimensions in FDS+Evac. The offset of shoulder circles is given by $ds = R_d - R_s$, for the definition of the other body size variables, R_d , R_t , R_s , see Fig. 3.5 The body sizes and walking velocities of the agents are personalised by using them from uniform distributions, whose rages are also given. Table taken from ref. [XXX]

Body type	R _d (m)	$\overline{R_t/R_d}$	R_s/R_d	d_s/R_d	Speed (m/s)	
Adult	0.255±0.035	0.5882	0.3725	0.6275	1.25±0.30	
Male	0.270±0.020	0.5926	0.3704	0.6296	1.35±0.20	
Female	0.240±0.020	0.5833	0.3750	0.6250	1.15±0.20	
Child	0.210±0.015	0.5714	0.3333	0.6667	0.90±0.30	
Elderly	0.250±0.020	0.6000	0.3600	0.6400	0.80±0.30	
Table from ref. [XXX]						

SOCIETAL APPROACH

Number and composition of the population (users)

What if....

- Elderly individuals are a majority in coming social groups?
- **Visiting people** is totally unfamiliar with public spaces because because they spend most of their time in virtual spaces (fornite, youtube, internet, facebook)?
- **Social cohesion** is going from homogeneous to heterogenous condition because policies, operational scenarios, historical and beliefs?
- **Physical characteristics** would affect a most of the user in a specific fire scenario? (obesity, elderly population..)

Operational context

What if....

- Infrastructure and vehicle traffic is changing, making more critical any fire incident.
- Vehicle market is changing affecting occupancy rate.
- Mobility paradigms change having higher occupancy rates and accidents.

Agent-based modeling

Detection and reaction time

Agent-based modeling

Rational location of passengers

Location according:

- Operational features
- Demographic composition
- Vehicle occupancy statistics
 - Agents models

Agent-based modelling

TOP VIEW

BOTTOM VIEW

AALBORG UNIVERSITY

REAL-TIME RISK ASSESSMENT

Real-time Risk Assessment

Monitoring and Fire-Emergency system

- Traffic volumen
- AADT-real time curve
- Vehicles per hour
- Vehicles per kilometer
- Heavy-goods vehicles
- Daytime
- Level of service
- Thermal load
- Potential Severity of fire

Traffic volumen Annual Average Daily Traffic Tunnel zone Daytime Vehicles per hour Level of service Vehicles per kilometer Heavy-goods vehicles Passenger vehicles

> Alarm system Monitoring system Fire emergency system

- Fire accident
- Monitoring system
- Fire emergency system
- Tunnel zone

Fire accident Thermal load Potential severity of fire Escape conditions

Real-time Risk Assessment

Monitoring and Fire-Emergency system

- Traffic volumen
- AADT-real time curve
- Vehicles per hour
- Vehicles per kilometer
- Heavy-goods vehicles
- Daytime
- Level of service
- Thermal load
- Potential Severity of fire

- Fire accident
- Monitoring system
- Fire emergency system
- Tunnel zone

Real-time Risk Assessment

Monitoring and Fire-Emergency system

Fast intervention

Detect scenario

Avoid scenarios

25%	25%	25%	25% = 100%
	25%	25%	25% = 75%
		25%	25% = 50%

Agent-based modeling

Real-Time informatio vs Effectiveness-Efficiency

Thanks for your attention

1 1

