

Co-funded by the Erasmus+ Programme of the European Union

SPECIAL MOBILITY STRAND

Application of Service Oriented Geographic Information System in Risk Analysis Gordana Jakovljević Tirana, January 14th 2018

Gordana Jakovljević, University of Banja Luka Faculty for Architecture, Civil Engineering and Geodesy, Republic of Srpska, B&H

The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Presentation outlines

✓ Decission Making Process
 ✓ Decission Support System
 ✓ Spatial Decision Supported System
 ✓ Geographic Information System
 ✓ MultiCriteria Decission Analysis
 ✓ Forest Fire Risk Assessment

Definition

Hazard X Vulnerability is a potentially dampgingus etypeksiwity to suffer loss or a set of event, phenomena pnet/activity which may causen version and activity, which may causen version of processes resulting from activity, property damage version and factors. economic disruption or environmental degradation.

Definition

✓Disaster ✓Integrated disaster management ✓Disaster risk reduction

Decision making process

Decision analyst

Stakeholder

Decision maker

Δ

Decision Support System

DSS incorporate modeling or analysis tools along with database managemet systems and user interface which provide access and allows decision makers to combine personal judgment with computer output, in a user-machine interface, to produce meaningful information to support a decision-making process.

✓ Information-based✓ Model-based

DSS general structure

SUTTO F BANNA

Operational

Data warehouse

theme

Marketing

Production

Data mining

Data mining is the analysis of (often large) observational data sets to find: ✓ unsuspected relationships and characteristics, dependencies, tendencies and summarize the data in novel ways that are both understandable and Analyze Operational DB Define problems, opportunities

Spatial Decision Support System

SDSS are explicitly designed to provide the user with a decision-making environment that enables the analysis of geographical and non spatial information to be carried out in the flexible manner.

Geographic Information System

A geographic information system (GIS) is a computer system for capturing, storing, querying, analyzing, and displaying geospatial data

Geographic data

GIS Data model

Service Oriented Architecture

Interoperability

Service Oriented Architecture

Data source

Data source

- ✓ Official government data
 ✓ Commertial
- ✓ Open data

https://www.geofabrik.de

https://earthexplorer.usgs.

https://scihub.copernicus.eu/dhus/#/home

Application of GIS and remote sensing technologies in disaster risk management

Occurrence / Need	Earthquake	Volcanic eruptions	Landslide	Tsunami	Flood	Hurricane
Necessary information	Geological and land use maps	Maps of areas endangered by lava, ash and fire	Tilt maps, terrain stability, digital height model, geological and land use maps, standing water areas	Bathymetric/ topographic maps	Maps of flooded areas, land use, land cover, and land humidity	Maps of land use
Spectral channels	Visible and NIR	Visible, close infrared and thermal IR	Visible	Visible including blue and close infrared spectrum	Thermal and close infrared and microwaves	Visible and closely infrared
Spatial resolution	20-80 m	30-80 m	10-30 m	30m	20 m for urban area, 30-80 m for agricultural area	20 m for urban, 30-80 m for agricultural area
Area size	Large areas	Large areas	Large areas	Large areas	Large areas	Large areas
Frequency of observation for planning	1 to 5 years	1 to 5 years	1 to 5 years	1 to 5 years	Per season	Per year

Erasmus+ Programme of the European Union

Forest fire risk assessment

Figure 140. Burnt area scars in Croatia, Bosnia and Montenegro in 2017.

- 1. Very low
- 2. Low
- 3. Moderate
- 4. High
- 5. Very High

Identify alternatives

Forest fire risk assessment

Define criteria

Klaster	Criteria		
Land use	Vegetation		
Topography	Aspect		
	Slope		
	Elevation		
Climate	Mean annual air temperature		
	Mean annual precipitation		
Socioeconomic	Distance from settlements		
	Distance from roads		

Forest fire risk assessment

Description criteria

Vegetation. The main factor that affects the spread of a forest fire is the type and the characteristics of the vegetation. The Vegetation is crucial for the fire spreading because it represents the total fuel available for the fire.

Aspect. Generally, in the north hemisphere, south and southeast aspects are the most suitable for both, ignition and spreading of fire, they receive more direct sunlight and because of that they have a higher temperature and a minor humidity.

Slope. The slope influences on the fire behavior. Steep slope can increase the rate of the fire spread. Slope affects speed and capability of firefighter and equipment movement and there for speed of fire extinguishing. increasing of the slope for 10% can double the rate of the fire spreading.

Elevation. Elevation is a crucial physiographic variable that is associated with wind behavior and fire spreading. Therefore it affects a structure of vegetation, total fuel available for fire, air humidity and temperature.

Mean annual air temperature. Air temperature is one of the most important climate factors. Fires can occur at any temperature, but their number depends on increasing of the temperature.

Mean annual precipitation. Precipitation is an important factor which influences suitability for ignition and fire spreading. It's appears in the form of air humidity, humidity of habitat and fuel. If fuel is dry, fire will spread faster.

Distance from roads. 95% of forest fires in the Mediterranean is caused by the human negligence. The roads are a significant factor because their presence means human activity, therefore the forest near roads have a higher risk of forest fires.

Distance from settlements. It was found that the man is the main cause of the fire, so it was logical that with increasing of distance from human's residence the number of fires would decrease.

AHP

Table 1 - Scale of relative importance (according to Saaty (1977; 1980)).

Intensity of importance	Definition			
1	Equal importance			
2	Weak			
3	Moderate importance			
4	Moderate plus			
5	Strong importance			
6	Strong plus			
7	Very strong or demonstrated importance			
8	Very, very strong Extreme importance			
9				

Elevation (C4) 0.16

0.11

0.14

0.138

WLC Forest fire risk assessment

Evaluate alternatives

Criteria	Intensity of importance						
	1	2	3	4	5		
	very low	low	moderate	high	very high		
C1*	(512)	(112,332,333)	(211,242,243)	(222,231,321,3	(311,312,31		
				24)	3)		
C2	Ν	NE, NW	E, W	Flat, SE	S, SW		
C3	0-5º	5-15º	15-25º	25-35 ⁰	>35º		
C4	>800 m	600-800 m	400-600 m	200-400 m	0-200 m		
C5	< 10 Cº	10-15 Cº	15-20 C⁰	20-25 C⁰	>25 Cº		
C6	>1750 mm	1500-1750 mm	1250-1500 mm	1000-1250	< 1000 mm		
				mm			
C7	>1200 m	900-1200 m	600-900 m	300-600 m	0-300 m		
C8	>2000 m	1500-2000 m	1000-1500 m	500-1000 m	0-500 m		

WLC Forest fire risk assessment

Evaluate alternatives

Evaluate alternatives

Weighted Linear Combination

$S=\Sigma w_i \times x_i$,

where S is the fire hazard rating, wi is normalized weight of factor i, and xi is the criterion score of factor i.

WLC Forest fire risk assessment

WLC Forest fire risk assessment

Validate solutions

Application of Service Oriented Geographic Information System in Risk Assessment

Conclusion

1. What are the main components of Disaster Risk Management?

- 2. What is DSS and why we need it?
- 3. What is the major difference between DSS and SDSS?
- 4. Which data models use GIS for computer representation of real world?
- 5. What are the major advantages of service oriented GIS comparing to traditional GIS?

Thank you for your attention

Gordana Jakovljević e-mail:gordana.jakovljevic@aggf.unibl.org

Knowledge FOr Resilient soCiEty